Mountain Top Applications for Single Board Computers

Dave WA1JHK Willem AC0KQ

Applications

- Site management
 - Device control & monitoring
- Networking
 - IP services like DNS, NTP,
 - Monitoring, cping, intrusion detection, ...
- Repeater linking
 - AllStarLink analog linking
 - MMDVM digital linking
- APRS, packet, RMS
- Webcam
- Software Defined Radio (SDR)

Mountain Top Considerations

- Reliability
 - Difficult access
 - Noisy and unreliable power
- Environment
 - High RF fields
 - Lightning
 - High density altitude
 - Large temperature swings
- Things to consider in all installations

Single Board vs. Desktop/Server

- SBC pros
 - DC power (5V ~1A)
 - No fan or spinning disk
 - Small form factor
 - Serial/I2C/SPI/GPIO and expansion
 - Inexpensive
- Desktop/server pros
 - Better performance
 - SATA and other hard disk
 - Expandable memory

Classes of Single Board Computers

- Microcomputer: Full multitasking (linux) OS
 - Raspberry Pi
 - Beaglebone Black
- Microcontroller: Single program
 - Arduino
 - Raspberry Pi Pico
 - Adafruit Feather
 - ESP8266, ESP32, etc
 - Popular in Internet of Things (IOT)

Add on boards/Daughterboards

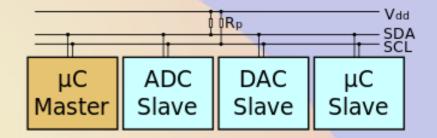
- rPi Hardware Attached on Top (HAT)
- rPi Zero Bonnet
- Beaglebone cape
- Arduino Shield
- Adafruit Featherwing

Native Connectivity

• IP

- Raspberry Pi (ethernet & wifi)
- Beaglebone Black (ethernet)
- ESP8266/ESP32 (wifi only)
- Serial/USB
 - Arduino
 - Raspberry Pi Pico
 - Arduino Feather
 - IP often provided by ESP8266 daughter board

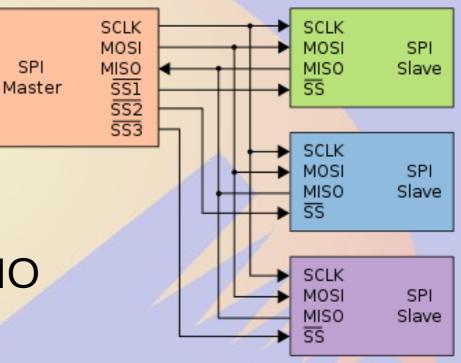
SBC Device Connectivity


- USB
- Serial (TTL level)
- I²C (Inter-Integrated Circuit)
- SPI (Serial Peripheral Interface)
- GPIO (General Purpose I/O)
 - PWM (Pulse Width Modulation)
 - 1wire
 - General bit banging
- Analog in/out

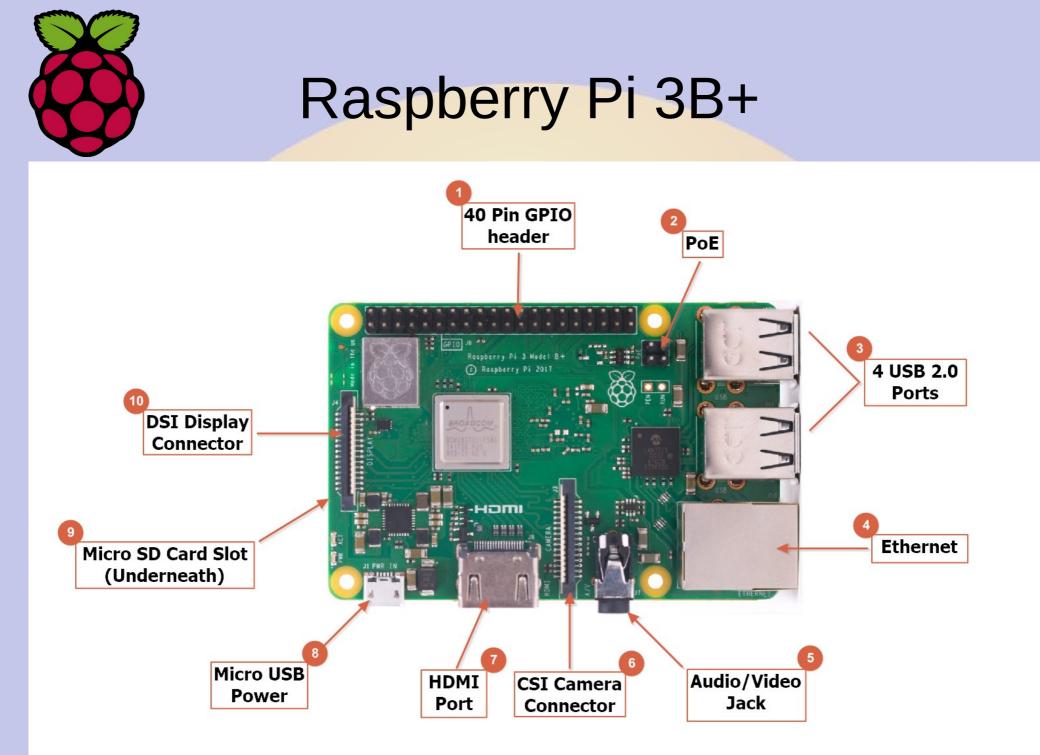
USB & Serial Point-to-Point

- Serial
 - TTL 0-5V (RS-232 +/-15V)
 - Ground, Rx, Tx
 - RTS, CTS optional
 - 115,200 bits/sec common
- Universal Serial Bus
 - Ground, D+, D-, +5V
 - Type C adds more
 - 1.5 Mb/s-20Gb/s
 - Can be expanded using a hub

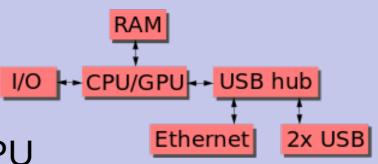
I²C – Inter-Integrated Circuit


- a.k.a SMBus
- Bidirectional Serial

- Supports up to 127 devices
- Gnd, SDA (data), SCL (clock), Vdd
- Default speed 400 kb/s
- Commonly used for fast low level chip-chip
 - INA219 current/voltage sensor
 - LCD displays
 - Temperature/pressure/RH sensors


SPI Serial Peripheral Interface

- Bidirectional Serial
- Gnd, SCLK, MOSI, MISO CE/SS for every slave
- Speeds up to 250Mbps
- Commonly used for faster IO
 - Memory
 - Ethernet/WiFi/Bluetooth/RFID
 - GPS,
 - Full duplex

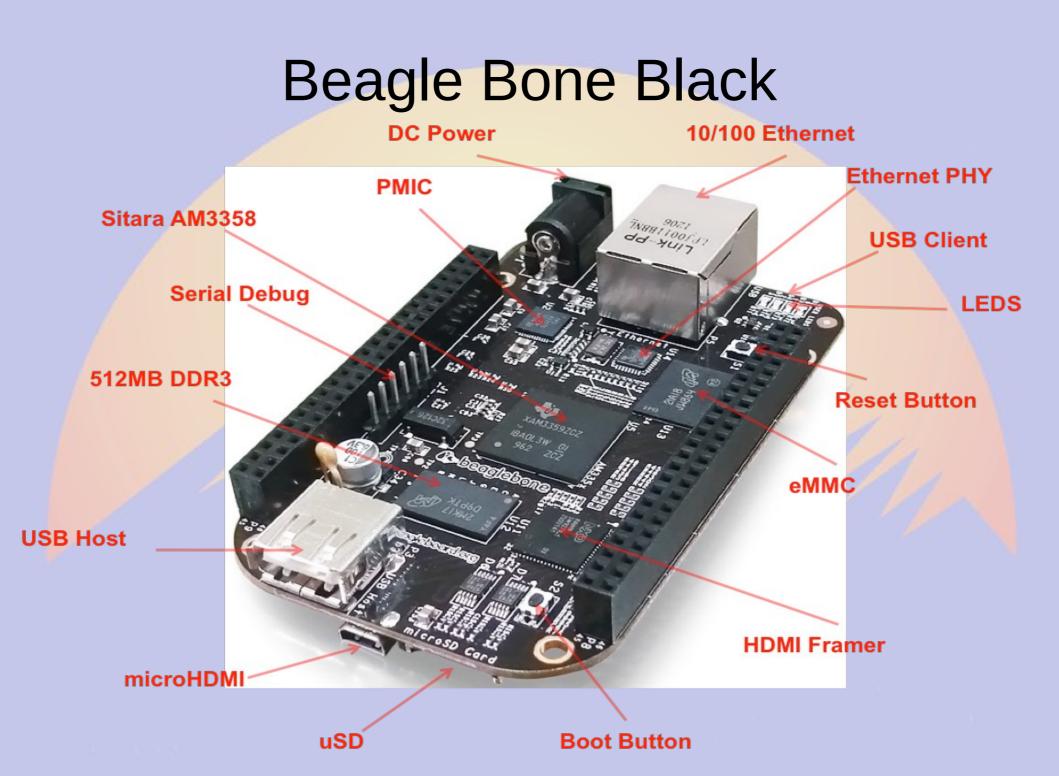

GPIO and Analog IO

- General Purpose IO
 - Bidirectional digital IO (typically 3.3V)
 - Some GPIO pins have special functions (e.g. PWM)
 - Can be bit banged to perform other functions
 - Max current ~50mA
- Analog IO
 - In and out typically different (BB 1.8V)
 - Use voltage divider for other voltages (Feather A7)
- Many pins can be programmed for different uses
 - CPU pins and board pins overloads names

Raspberry Pi Pros and Cons

- Pros
 - Full multitasking OS
 - Active development (more than 35 million sold)
 - Large user community (most popular by far)
 - Many HATs to expand capabilities
 - Well supported in software (debian derivatives and others)
- Cons
 - Single serial port (second on later models)
 - No analog I/O
 - No native audio input
 - USB limits I/O speeds
 - Pins connect directly to CPU




Raspberry Pi Models

Model	CPU	RAM	Ether	Wifi	USB	Price
2B	0.9GHz quad	1GB	100Mb		4	\$30
3B	1.2GHz quad	1GB	100Mb	2.4GHz	4	\$35
3B+	1.4GHz quad	1GB	1Gb	2.4GHz	4	\$35
4B	1.5GHz quad	1GB-8GB	1Gb	2.4/5GHz	4	\$35-75
0	1.0GHz single	512M			1	\$5
0W	1.0GHz single	512M		2.4GHz	1	\$10

- My preference is the 3B+ because it does not need a fan
- Current draw (depends on the load and daughterboards)
 - 0W 250mA
 - 3B+ 500mA
 - 4B 800mA

Raspberry Pi Pinout

Beagle Bone Black Pinout

P9 —				
DGND	1	2	DGND	
VDD_3V3	з	4	VDD_3V3	
VDD_5V	5	6	VDD_5V	
SYS_5V	7	8	SYS_5V	
PWR_BUT	9	10	SYS_RESETN	
UART4_RXD	11	12	GPIO_60	
UART4_TXD	13	14	EHRPWM1A	
GPIO_48	15	16	EHRPWM1B	
SPI0_CS0	17	18	SPIO_D1	
I2C2_SCL	19	20	I2C2_SDA	
SPIO_DO	21	22	SPI0_SCLK	
GPIO_49	23	24	UART1_TXD	
GPIO_117	25	26	UART1_RXD	
GPIO_115	27	28	SPI1_CS0	
SPI1_DO	29	30	GPIO_112	
SPI1_SCLK	31	32	VDD_ADC	
AIN4	33	34	GNDA_ADC	
AIN6	35	36	AIN5	
AIN2	37	38	AIN3	
AINO	39	40	AIN1	
GPIO_20	41	42	ECAPPWMO	
DGND	43	44	DGND	
DGND	45	46	DGND	

SV TKBELT dd-)	1513BBBK 0001	
		9

LEGEND
Power/Ground/Reset
Available Digital
AVAILABLE PWM
SHARED I2C BUS
RECONFIGURABLE DIGITAL
ANALOG INPUTS (1.8V)

P8					
DGND	1	2	DGND		
MMC1_DAT6	з	4	MMC1_DAT7		
MMC1_DAT2	5	6	MMC1_DAT3		
GPIO_66	7	8	GPIO_67		
GPIO_69	9	10	GPIO_68		
GPIO_45	11	12	GPIO_44		
EHRPWM2B	13	14	GPIO_26		
GPIO_47	15	16	GPIO_46		
GPIO_27	17	18	GPIO_65		
EHRPWM2A	19	20	MMC1_CMD		
MMC1_CLK	21	22	MMC1_DAT5		
MMC1_DAT4	23	24	MMC1_DAT1		
MMC1_DAT0	25	26	GPIO_61		
LCD_VSYNC	27	28	LCD_PCLK		
LCD_HSYNC	29	30	LCD_AC_BIAS		
LCD_DATA14	31	32	LCD_DATA15		
LCD_DATA13	33	34	LCD_DATA11		
LCD_DATA12	35	36	LCD_DATA10		
LCD_DATA8	37	38	LCD_DATA9		
LCD_DATA6	39	40	LCD_DATA7		
LCD_DATA4	41	42	LCD_DATA5		
LCD_DATA2	43	44	LCD_DATA3		
LCD_DATAO	45	46	LCD_DATA1		

DO

Beagle Bone Pros and COns

- Pros
 - Capes mechanically more sound
 - 4 serial ports, 8 analog in ports
 - Up to 67 GPIO pins
- Cons
 - More expensive (\$80)
 - Smaller user base
 - Fewer capes available
 - Single USB


SD cards

- OS requires 4GB with desktop, <1GB headless
- rPiOS optimized to not wear out SD card
 - Never run a database on an SD card
- Buy a reputable brand
 - I swear by SanDisk Ultra
 - 16GB good price point
 - UHS-1 (Class 10) good speed
 - \$6 each in 3pack
 - Have not lost one in 5+ years

Real Time Clock

- rPi does not have a hardware clock
- rPiOS will use NTP to set time if it has IP
 - Shutdown time saved to SD card, so clock starts from that time if no IP connection on reboot
- Many options to add RTC if it matters
 - PiFace Shim
 - Adafruit PiRTC
 - Typically I2C based
- Use GPS HAT if precise time matters but no IP available

Power Supplies

- Bad power is the primary failure mode
- Nominal 5.1V (alerts at 4.63V, max 5.25V)
- DC-DC converters helps with noisy power
 - oversize it
 - short, fat leads
- SMAKN DC-DC
 - 8-50V in
 - 5V3A out
 - micro USB
 - \$14

Enclosures

- Shielding is important in high RF environments
- Passive cooling and shielding metal enclosure
 - Onboard wifi range significantly limited
- Add chip heatsink of case does not touch chip

Download and Install OS

Raspberry Pi OS

- https://www.raspberrypi.org/software/operating-systems/#raspberry-pi-os-32-bit
- desktop for graphical login
- lite for text interface (headless)
- Copy to SD card
 - https://www.raspberrypi.org/software/
 - Imager for Windows/macOS/Linux
 - Use dd if you know what you are doing
- For headless enable ssh
 - touch <mountpoint>/boot/ssh
- Configure with raspi-config

sudo raspi-config 5 Interfacing Options

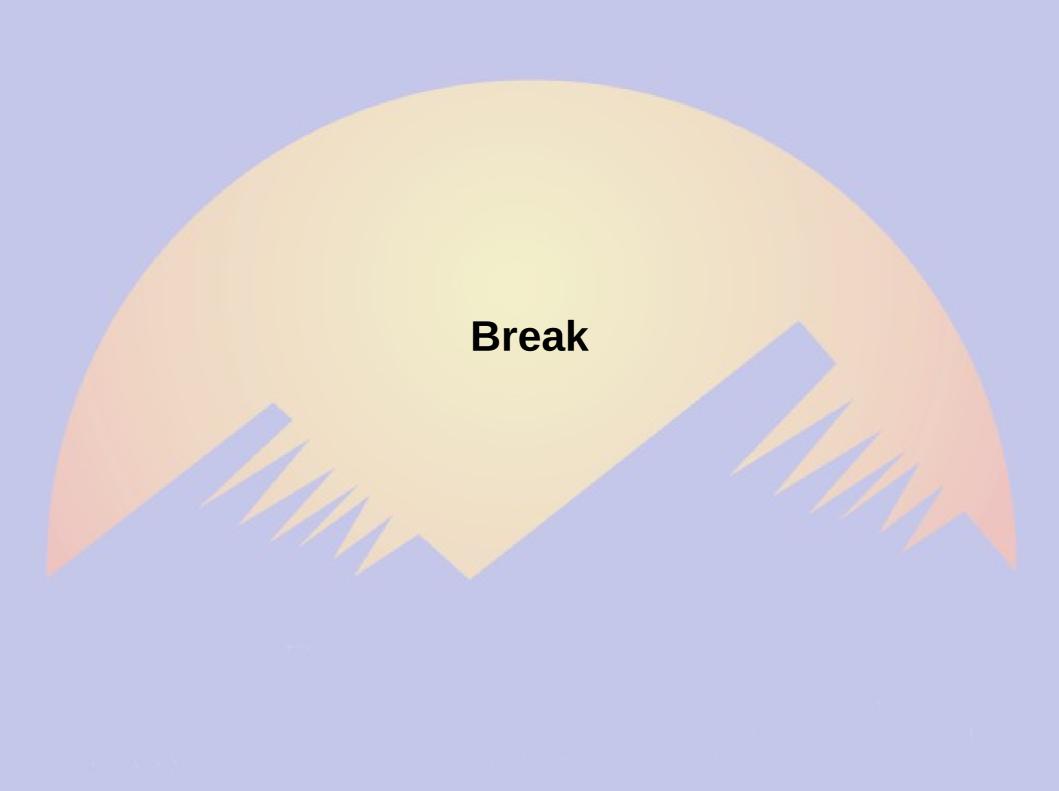
Raspberry Pi Software Configuration Tool (raspi-config)

Pl Camera	Enable/Disable connection to the Raspberry Pi Camera
P2 SSH	Enable/Disable remote command line access to your Pi using
P3 VNC	Enable/Disable graphical remote access to your Pi using Rea
P4 SPI	Enable/Disable automatic loading of SPI kernel module
P5 I2C	Enable/Disable automatic loading of I2C kernel module
P6 Serial	Enable/Disable shell and kernel messages on the serial conn
P7 1-Wire	Enable/Disable one-wire interface
P8 Remote GPI0	Enable/Disable remote access to GPIO pins

<Select>

<Back>

Accessing the Hardware


- Linux kernel support
 - Enable using raspi-config
 - File system access through /sys
- Circuit Python
 - Python libraries from Adafruit
- pigpio
 - C library

File Access to Hardware

- On Unix everything is a file
- Make pin 18 an output pin and set value high
 - echo "18" > /sys/class/gpio/export
 - echo "out" > /sys/class/gpio/gpio18/direction
 - echo "1" > /sys/class/gpio/gpio18/value
- Read value of pin 20
 - echo "20" > /sys/class/gpio/export
 - echo "in" > /sys/class/gpio/gpio20/direction
 - cat /sys/class/gpio/gpio20/value
- Export and direction is required only once

Remote Access

- ssh (secure shell)
 - ssh user@host (or use Putty or equivalent)
 - Passwordless access
 - ssh-keygen -t rsa -b 4096 -C "user@domain.com"
 - ssh-copy-ide user@host
- DevDBd
 - Uses Mikrotik protocol for communications
 - Runs commands remotely
 - Read/write files on remote system

Power Overview

Typical Voltage Conversions

- AC-to-5V
- AC-to-12V-to-5V
- •
- AC-to-5V-UPS-to-5V
- AC-to-12V-UPS-to-5V

Power Overview

Microcontrollers

- Arduino, Feather, ESP8266
- Generally tolerant of power fluctuations and loss

Microcomputers

- Linux-based
- Raspberry Pi, PC
- Needs graceful shutdown to prevent file corruption
- Be careful with power!

5 Volt Power

Sensitivity of Rpi to 5V Power Input

5V Critical Input Range

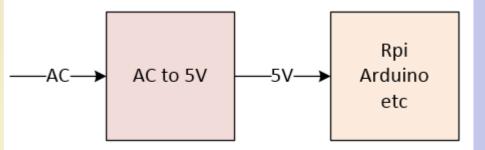
- "All models require a 5.1V supply..."
- "There is low-voltage detection circuitry that will detect if the supply voltage drops below 4.63V (+/- 5%). This will result in a <u>warning icon</u> being displayed on all attached displays and an entry being added to the kernel log."
- Current
 - Include Current of USB-Powered Devices, e.g. Keyboard,

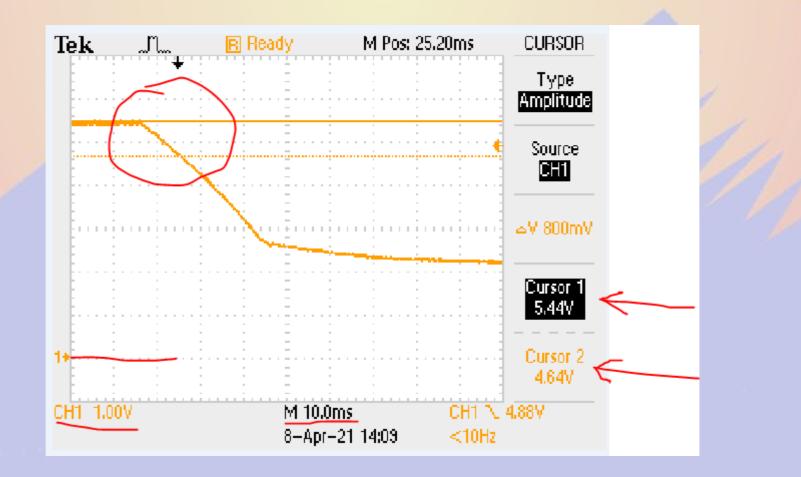
_			
1	Recommended PSU current	 Maximum total USB paripharal 	bare-board
	capacity	peripheral current draw	active current consumptio
			n

•<https://www.raspberrypi.org/documentation/hardware/raspberrypi/power>

AC-to-5V

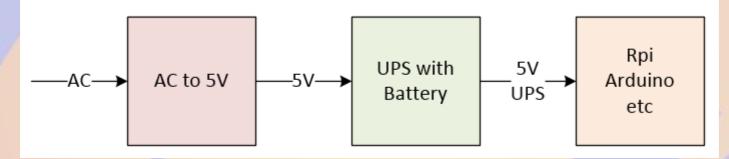
AC-to-5V Wallwart Don't forget you are powering USB devices, too!


- 5V, 3.5A
- \$15



https://smile.amazon.com/gp/product/B00L88M8TE

AC-to-5V


AC-to-5V Wallwart

AC-to-5V-UPS

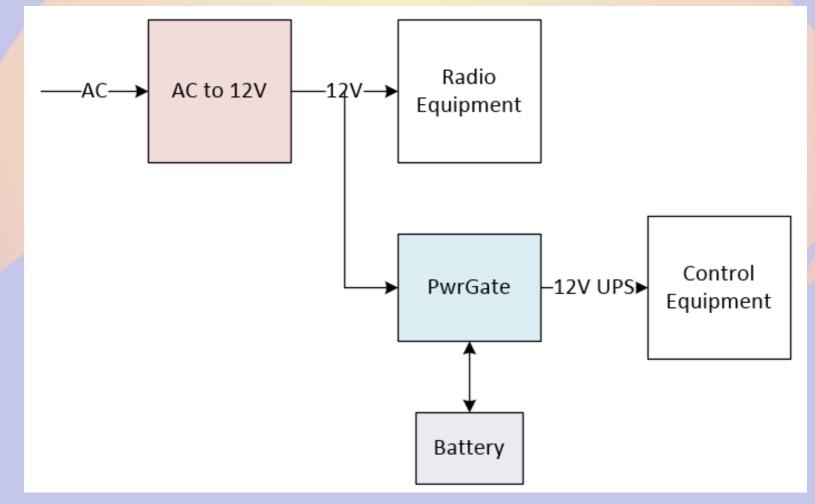
•5V Uninterruptable Power Supply (UPS)

•Attributes

- Backup Battery keeps Rpi up long enough for clean shutdown.
- Notify Rpi when to shut down
- Rpi confirms shut down, then UPS powers off
- Auto power-on
- Lithium Charger
- Parameters are Configurable

5V UPS

•PiJuice


- Includes Real Time Clock
- Full UPS
- Reports Battery Status to RPi
- Auto Shutdown
- Configurable Power On
- Open Source
- Choose battery size for uptime requirement,
 - 1820 mAh, Rpi 3B+ >2 hours

- https://www.sparkfun.com/products/14803
- https://github.com/PiSupply/PiJuice/blob/master/Documentation/PiJuice%2 0Guide.pdf
- https://learn.pi-supply.com/battery-levels

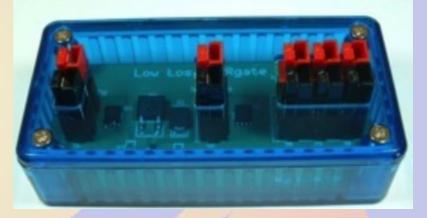
AC-to-12V

•Typical at Radio Sites

12V UPS

•PwrGate?

 Power Switch and SLA Battery Charger


•Flint Hills Radio (KI0BK)

- 25A, Low Loss FET Switch, \$85
- http://www.flinthillsradioinc.com

West Mountain Radio

- PWRgate PW40S, 40A, \$140
- http://

www.westmountainradio.com/ product_info.php? products_id=pg40s

12V-to-5V

- Can use with 12V-UPS
- Bad power is the primary failure mode
- •Nominal 5.1V (alerts at 4.63V, max 5.25V)
- •DC-DC converters helps with noisy power

-oversize it -short, fat leads •SMAKN DC-DC -8-50V in -5V3A out -micro USB -\$14

12V-to-5V

- Use with 12V UPS
- TOBSUN
- Input: 8V-40V DC
- Output 5V 10A DC
- Built-in Protection
 - Over-voltage,
 - Over current,
 - Over temperature,
 - Short circuit auto protection
 - Return to normal conditions when fault clears
- \$10

Buffer that I/O!

•A sure way to damage your RPi is to directly connect unbuffered signals to your board!!!

•Bad

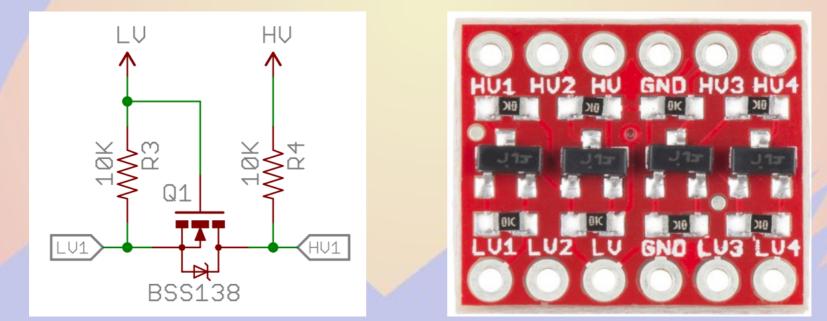
- A long wire connected to a GPIO to a door switch
- Long wires for I2C to a temp sensor 10 feet away
- A 5V device to your 3.3V GPIO

•Good

- I2C Buffer to external devices
- GPIO Digital Input Buffer
- GPIO Digital Output Buffer or Relay
- Level Translators
- A2D Input Buffer

Buffer that I/O!

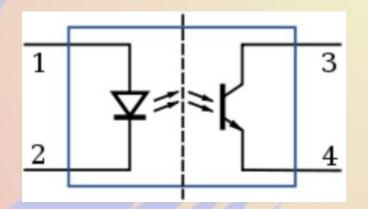
Watch the Absolute Maximum Ratings!

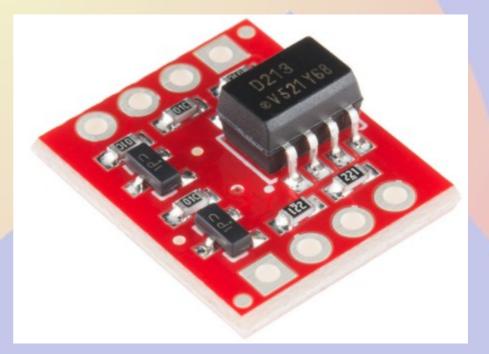

Table 36-1. Absolute Maximum Ratings

Symbol	Parameter	Condition	Min.	Max.	Units
V _{DD}	Power supply voltage		0	3.8	V
IVDD	Current into a V _{DD} pin		-	92	mA
IGND	Current out of a GND pin		-	130	mA
V _{PIN}	Pin voltage with respect to GND and V _{DD}		GND-0.3V	V _{DD} +0.3V	v
T _{storage}	Storage temperature		-60	150	°C

 Maximum source current is 46mA and maximum sink current is 65mA per cluster. A cluster is a group of GPIOs as shown in Table 36-2. Also note that each V_{DD}/GND pair is connected to 2 clusters so current consumption through the pair will be a sum of the clusters source/sink currents.

Buffer that I/O!


CAUTION!!! Don't let the smoke out!!!
3.3V to 5V, Bidirectional, Flexible Voltage Range

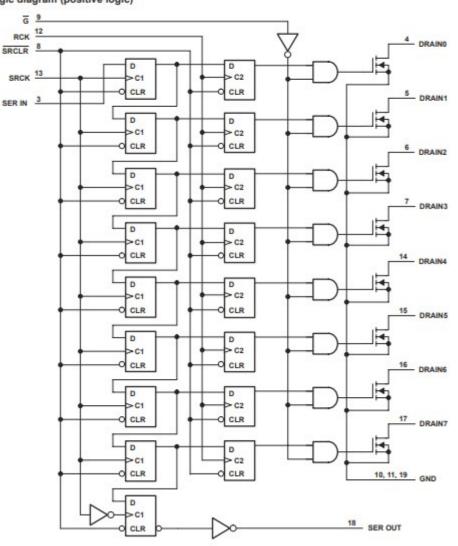


https://www.sparkfun.com/products/12009\$3

Digital Input Buffer

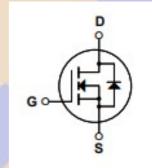
- Translators
- Optoisolators

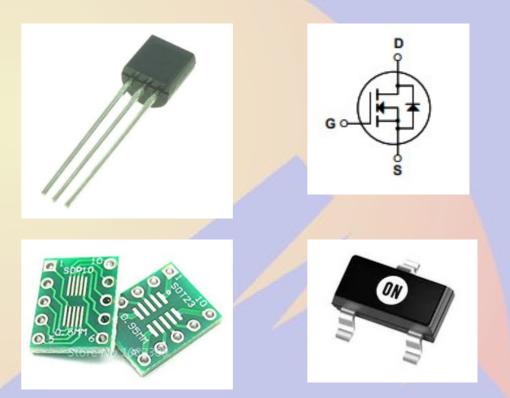
•https://www.sparkfun.com/products/9118


- •FET Buffers
- •TPIC6B596
- •SPI Interface
- Outputs
 - 50V Max
 - 150 mA Max

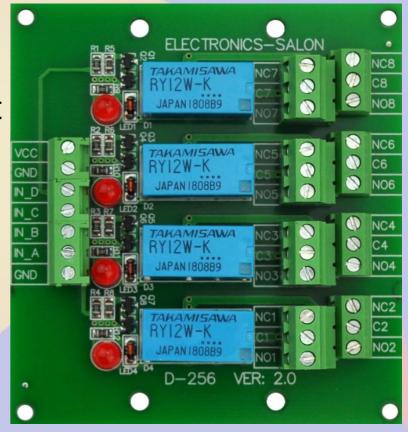
•\$2

•https://www.mouser.com/ ProductDetail/Texas-Instruments/TPIC6B596N


TPIC6B596 POWER LOGIC 8-BIT SHIFT REGISTER


FET Buffers
60V Max
32A Max
\$1

 http://cdn.sparkfun.com/datasheets/Components/General/ FQP30N06L.pdf


- FET Buffers60V Max450 mA Max
- •<\$1

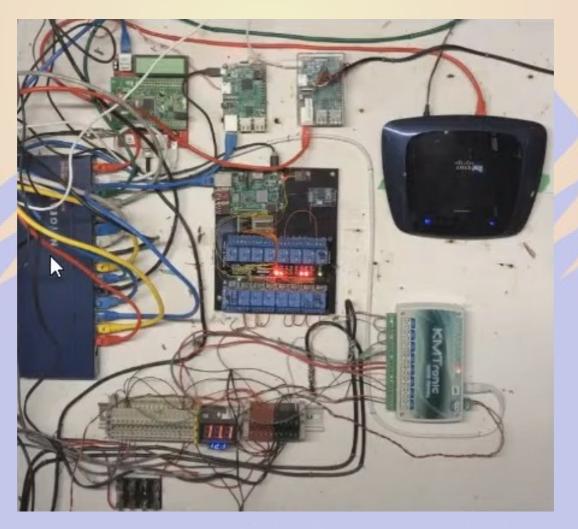
- https://www.mouser.com/ProductDetail/ON-Semiconductor-Fairc hild/2N7002
- https://smile.amazon.com/MSOP10-Transfer-Adapter-SOT-23-MSOP-10/dp/B07PBGXP77

Relay Board

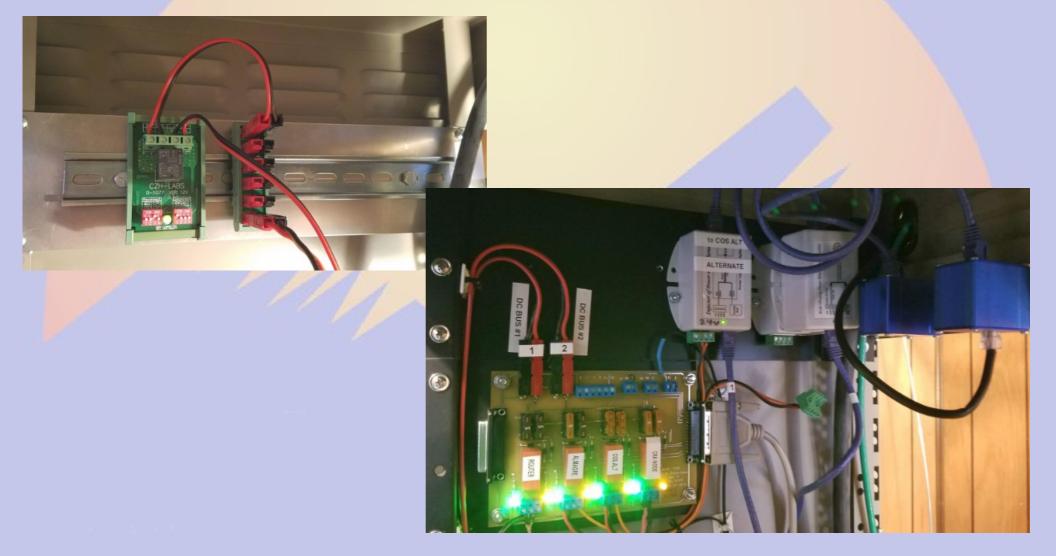
Buffer for low drive current

- https://smile.amazon.com/Electronics-Salon-Signal-Version-Arduino-Raspberry-Pi/dp/B00M90SR3G
- https://images-na.ssl-images-amazon.com/images/l/ 91Ml0Tph-rL.pdf

AC Outlet Strip


- \$27
- 1 outlet always
- 1 normally ON
- 2 normally OFF

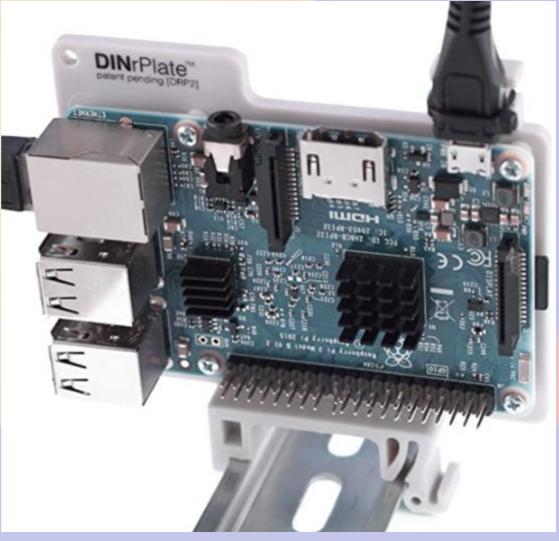
- https://smile.amazon.com/gp/product/ B00WV7GMA2
- http://www.digital-loggers.com/iot2faqs.html


Site Organization?

•Now where was that connected?

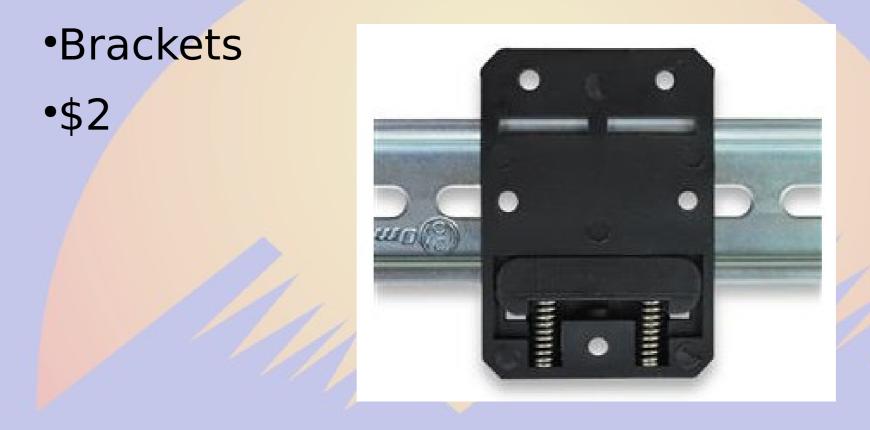
Site Organization?

•Now where was that connected?



Site Organization?

•Now where was that connected?


Raspberry PiDINrPlate\$13

https://smile.amazon.com/gp/product/B018J33308

•http://www.winford.com/products/dinm01.php

•http://www.winford.com/products/dinm01.php

•Terminal Strips

•\$20

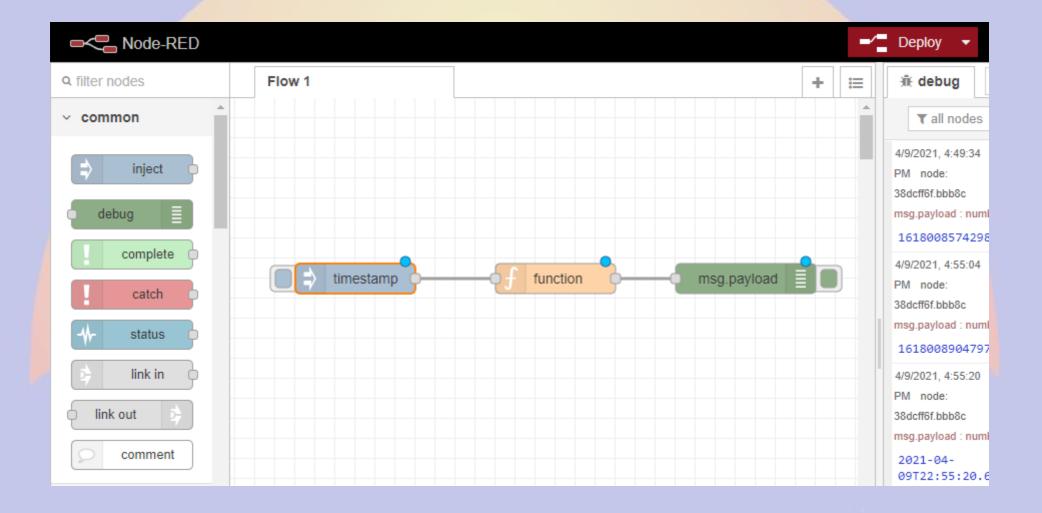
CircuitPython

Boards it supports

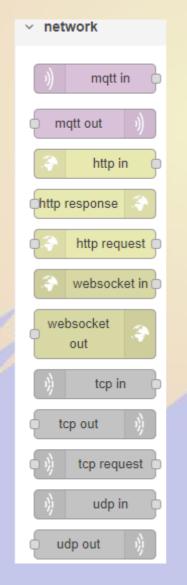
- ST-Nucleo
- Feather
- Arduino
- Rpi Pico
- Many, Many More...
- https://circuitpython.org/
- https://learn.adafruit.com/welcome-to-circuitpython

•Also on the Raspberry Pi

 https://learn.adafruit.com/circuitpython-on-raspberr ypi-linux


CircuitPython

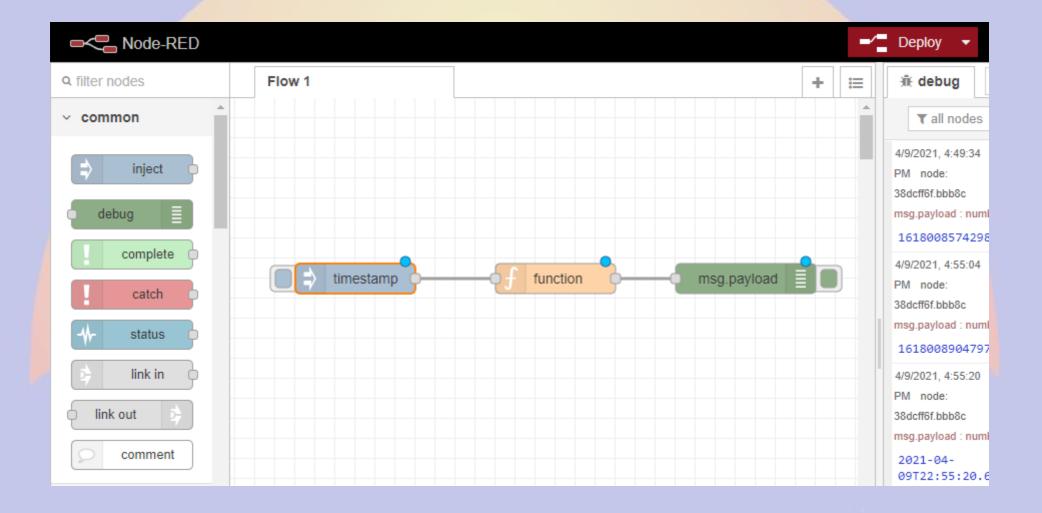
 Many Libraries to support board peripherals import board import digitalio import time


led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True: led.value = True time.sleep(0.5) led.value = False time.sleep(0.5)

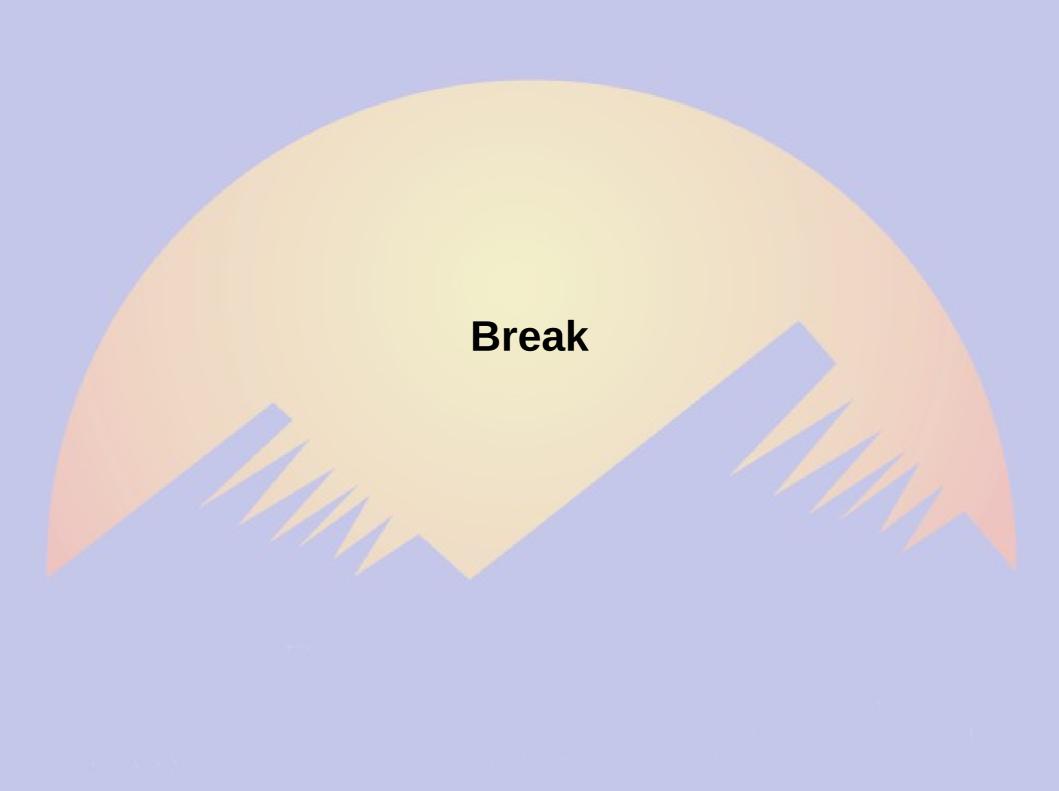
- •Developed by IBM in 2013
- Browser-based Visual Programming for non-programmers
- WYSIWIG event-action framework





∨ sequ	 sequence 							
•••	split	•						
e ®∎	join							
11	sort	3						
	batch	3						
✓ parse	∨ parser							
1,2	CSV	B						
	html	₿						
0	json	B						
	xml	₿						
Y	yaml	B						

 stora 	ge	
•	file	•
E	file in	•
٩	watch]
	tail]


Advanced Display

References

- https://nodered.org/
- https://nodered.org/docs/getting-started/
- Forum for Help and Discussion
 - https://groups.io/g/nodered-hamradio
- •Ham Radio Remote Station Control Presentation by Mike Walker, VA3MW, FlexRadio
 - https://www.youtube.com/watch?v=AJGhu8r7cYU&t =22715s
 - Start at timestamp 4:15:30

Relay Controller

- Relay MUST be opto-isolated and 5V
- 1,2,4,8 clusters for Arduino works great
- May be lo or hi to activate relay
- Good for 110AC, high current applications
- Solid state relay more expensibe but faster and more reliable

Serial Control

- ssh to rPi/BBB, minicom to serial device
- Serial is TTL level and direct from CPU
 - protect from RF
- Serial HAT
 - MAX232 to generate +/-15V
- USB serial
 - DB9/DB25
- USB parallel

Temperature Measurement

rPi CPU Tempreature

cat /sys/class/thermal/thermal_zone0/temp
Result 23406 means 23.406°C (74.1°F)

- 1wire pin 18
 - Supported in kernel
 - Shield wires!!!
 - Access from file system or CircuitPython
- 1wire USB (PL2303TA)
 - More tolerant of RF
 - apt-get install digitemp
 - digitemp_DS9097 -i -s /dev/ttyUSB0

Network monitoring with cping https://www.prinmath.com/ham/cping.zip

- ping and traceroute from remote site
 - Uses curses for graphic like display
- Real time network monitoring
 - Helps to find jitter and intermittent problems
 - Helps find split or flapping routes

2021-04-06 17:14:07 #383 Period 1s Ping time x1 x10 x100 x1000 Traceroute to GrMesa West

Hon	Host	IP	50	40	30	20	10	0 m	s min	avg	max	lost
nop	nost									2		_
1	router.saddleback.rmham	10.30.32.1	1111111111111111	111111111	.11111111111	11111111111	111111111111111	.11 0.	6 0.5	0.6	1.0	0
2	router.squaw.rmham	10.20.13.1	11121211121112	121111112	21111211122	1111212121	1111121112115	11 1.	2 0.9	1.5	18.5	Θ
3	router.devilshead.rmham	10.20.5.2	44323353332333	334233333	3433373 <mark>2</mark> 35	3333313332	3333733333334	63 2.	8 1.9	3.5	21.3	Θ
4	router.badger.rmham	10.20.14.2	64445454564444	441857445	5667464 <mark>2</mark> 77	8555424747	4545855454448	375 4.	6 2.9	5.4	26.5	Θ
5	router.mosquito.rmham	10.20.31.2	76816579675766	589866568	37797576 <mark>2</mark> 81	9657529751	6816886666559	79 8.	7 4.5	7.5	26.3	Θ
6	router.upperdowd.rmham	10.20.32.2	18118991181817	689119971	17819799281	1991129119	891911879931	11 11.	2 5.8	9.9	31.9	Θ
7	router.bellyache.rmham	10.20.40.2	9111911111118	711111111	1 <mark>91211138</mark> 1	1991129119	1119111111311	11 11 .	6 6.9	12.4	33.3	Θ
8	router.castlepeak.rmham	10.20.41.2	11111111111111111	111111311	11112111311	3111121 <mark>XXX</mark>	11111111111313	11 15 .	0 9.2	14.9	46.1	3
9	router.sunlight.rmham	10.20.42.2	1111111111112111	111111311	11112111311	3111121XXX	1211111111311	11 15.	8 10.4	17.1	46.7	3
10	router.grandmesa.rmham	10.30.180.1	11121111121112	122211321	1222111312	3111121XXX	2211121111322	211 1 6.	9 12.3	19.3	46.7	3

DNS

Full DNS

- apt-get install bind0
- Allows internal and external view of network
- Ability to add local domains
- PiHole (DNS masquerade)
 - https://pi-hole.net/
 - Network-wide Ad Blocking
 - Can be used to block undesirable domains
 - Can still add local domains
 - Really helps if bandwidth is limited

RADIUS

- Remote Authentication Dial In User Service
 - Allow centralized user login management
- No login if server is unreachable
 - Fail over to other servers
- User database can be stored in SQL database
 - ONLY appropriate use of a database!!!
 - Easy remote updates
- RMHAM usually combine DNS & RADIUS
 - Manage via DevDB

Network Time Protocol (NTP)

- NTP syncs system clocks
 - Important to correlate log entries
 - IP peers (mS accuracy, depends on latency)
- Stratum 1 gets time from GPS (μS accuracy)
 - GPS PPS supported in Linux kernel
 - NOT enabled in Raspbian

git clone https://github.com/davidk/adafruit-raspberrypi-linux-pps.git cd adafruit-raspberrypi-linux-pps cp kernel.img /boot/kernel.img.pps cp -a modules/* /lib/modules echo 'pps-gpio' >> /etc/modules echo "kernel=kernel.img.pps" >> /boot/config.txt echo "gpu_mem=16" >> /boot/config.txt

Remote Controled iGate

- Use API module
- freq.sh FREQ=144.390M

direwolf.sh

Load frequency
. freq.sh
if [-z "\$FREQ"]; then FREQ="144.390M"; fi

Run rtl-dw

rtl_fm -f \$FREQ - | direwolf -c /home/pi/sdr.conf -r 24000 -D

devdbd.conf

[direwolf]
run restart root /bin/systemctl restart direwolf
run status root /bin/systemctl is-active direwolf
write freq root:root:744 /usr/local/bin/freq.sh

KE0VH-10 Akron iGate

Direwolf status=active Frequency 144.390 MHz

Select Frequency 144

144.390 MHz 🗸

Restart Direwolf

AllStarLink Node

https://wiki.allstarlink.org/wiki/Beginners_Guide

- USB Radio Interface Module (URI or RIM)
 - CM119 Digital-Analog Audio Chip
 - PTT & COR/CTCSS lines
 - Heartbeat, Tx, COS, etc LEDs
- Raspberry Pi & AllStarLink modules
 - Install using Debian packages
- Can run 1 or 2 repeaters from an rPi3B
 - Local or remote management with AllMon2
 - Connect full duplex to other nodes via IP
 - Several HATs available to run as hotspot

AllStarLink Remote Base https://wiki.allstarlink.org/wiki/Remote_Base

- Special AllStarLink node
 - Half-duplex
 - Limited to one connection at a time
- USB Radio Interface Module (URI or RIM)
- Channel steering via GPIO or RIM or serial
 - VHF: Kenwood, Motorola, ...
 - HF: FT-897, IC-706, ...

AllStarLink Mixer/Voter

- Radio connects to RTCM (Radio Thin Client Module)
- RTCM send 20ms voice packets to node via IP
 - Mix mode mixes packets for retransmit
 - Voter mode chooses strongest among receivers
 - Requires GPS for accurate time stamps
- Node sends voice packets to transmitter RTCM
- Needs stable IP
 - ~100 kbps audio streams
 - Sensitive to latency and jitter between RTCM and Node
 - Tolerant of latency and jitter between nodes

AllStarLink Hub

- AllStarLink node with no local repeater
- Lots of ~100kbps data streams
 - Can overload rPi3B, may need rPi4
- Use mix of nodes and hubs
 - Example: Colorado Connections
 - Thorodin: Main hub is VM
 - Akron: RTCM+rPi Node on site
 - Glenwood & Pallisade: RTCM on site, rPi at Castle Peak

MMDVM/PiStar

https://www.repeater-builder.com/products/stm32-dvm.html http://www.pistar.uk/

- Digital equivalent of AllStarLink
 - DMR, D-Star, Fusion, P25, NXDN, POCSAG
 - Popular for digital hotspots
 - Repeater interface or pair of mobiles for repeater use
- PiStar software to run node
 - See K0NGA tech talk from 3/24/2021 https://youtu.be/mVsWeWyWUto

BPQ/Packet

https://www.prinmath.com/ham/bpq-config

- TNC/Pi, TNC/Black, TNC/Pi9K6, TAPR
 - about \$50 as a kit
 - Mostly 1200bps, some 9600bps
 - Stackable (I²C or multiple serial)
 - Pactor/KPC/KAM/... via USB
- BPQ
 - Multi-port BBS with advanced routing
 - Multi-port RMS to Winlink
 - Digipeater
- Configure with bpq-config
 - Manage via web interface

Software Defined Radio

https://www.rmham.org/wp-content/uploads/2020/04/rPiSDR.pdf

- Remote receiver (or transceiver)
 - RTL-SDR (VHF/UHF) about \$20 (but a bit deaf)
 - SDRplay, HackRF, etc
- Streaming entire spectrum many Mbps
- Decode on site, stream audio
 - GNUradio for advanced
 - <20 kpbs per stream</p>
 - CPU intensive
 - rPi3 OK, rPi4 better
 - Both will run hot

WebCam

- Many camera options
 - rPi camera module
 - Standard
 - NoIR for IR light
 - Third party cameras
 - USB web cam
- Video stream bandwidth depends on resolution
 - Can also take stills

Useful Links

- https://www.rmham.org/course-syllabus/
- www.adafruit.com
- www.sparkfun.com
- www.raspberrypi.org

Questions?